Integrating Catch Data into Madingley

if(hunger > fear)
 SeekFood();
else
 SeekRefuge();

Phil Underwood University of British Columbia, June 1st 2016

A Model of All Life

- Global
- Individual-based
- Mechanistic
- Exhibits emergent behaviours
- Potential for exploring:
 - Evolution
 - Adaptation
 - Regime shifts
 - Tipping points

Purves et al. (2013). Nature, 493.

https://github.com/phIndrwd/MadingleyData

Functional Types

Herbivore

Carnivore

Omnivore

Ectotherm

Endotherm

Autotrophic

Sessile

Mobile

Semelparous

How do they acquire energy?

Herbivore

Carnivore

Omnivore

Ectotherm

Endotherm

Autotrophic

Sessile

Mobile

Semelparous

What type of thermoregulation?

Sessile

Mobile

Herbivore

Carnivore

Omnivore

Endotherm

Autotrophic

Semelparous

Are they mobile?

Herbivore

Carnivore

Omnivore

Ectotherm

Endotherm

Autotrophic

Mobile

Semelparous

Method of reproduction?

Herbivore

Carnivore

Omnivore

Ectotherm

Endotherm

Autotrophic

Sessile

Mobile

Semelparous

Mechanistic Principles

Functional response determines rate at which predators strike

Feeding kernel determines prey for predator

Prey Density

Allometrically scaled metabolic and other rates

• Have mass

- Have mass
- Continuous attributes

- Have mass
- Continuous attributes
- Can assimilate and grow

- Have mass
- Continuous attributes
- Can assimilate and grow
 - To maturity

- Have mass
- Continuous attributes
- Can assimilate and grow
 - To maturity
 - Beyond maturity

- Have mass
- Continuous attributes
- Can assimilate and grow
 - To maturity
 - Beyond maturity
 - To reproduce

- Have mass
- Continuous attributes
- Can assimilate and grow
 - To maturity
 - Beyond maturity
 - To reproduce
- Metabolise and shrink
 - May starve

Individual Cohorts

- Have mass
- Continuous attributes
- Can assimilate and grow
 - To maturity
 - Beyond maturity
 - To reproduce
- Metabolise and shrink
 - May starve
- Abundance attribute

Ideal Trophic System

Madingley Trophic System

Trophic System I/O

Emergent Global Result

Harfoot et al. (2014). PLoS Biology, 12(4).

Fisheries Model Project Aims

- Integrate past fisheries catch data
- Integrate multi-year input data
- Improve oceanic ecological realism
- Experiment with alternative management scenarios
- Produce policy-relevant outputs.

Fisheries Model Project Aims

- Integrate past fisheries catch data
- Integrate multi-year input data
- Improve oceanic ecological realism
- Experiment with alternative management scenarios
- Produce policy-relevant outputs

Fisheries Model Project Aims

- Integrate past fisheries catch data
- Integrate multi-year input data
- Improve oceanic ecological realism
- Experiment with alternative management scenarios
- Produce policy-relevant outputs

Marine Madingley

Sea Around Us Data

324(5315×10 table									
	1 Year	2 CellD	3 TaxonName	4 CommonName	5 FunctionalGroupID	6 SLMax	7 MinDepth	8 MaxDepth	9 catchtypeID	10 SumCatch
1	1959	\$3632	Marine fishes	'Marine fishes'	4	50	10	9999	1	27.7925
2	1951	63595	'Hajidae'	'Skates'	21	98	1	4156	1	0.0848
3	1953	54366	Rostroraja alba	'ehite skate'	22	189	30	600		0.0805
4	1968	45713	Sharks rays a	Cartilaginous fish	21	150	10	9999	1	0.0022
5	1975	65052	Rachycentrid	'Cobia'	3	178	1	1200	1	8.99448-04
6	1976	27078	'Lemna nasus'	'Porbeagle'	20	287	1	9999		0.0155
7	1978	58673	Losgo'	Common squids'	25	46		500	1	1.9290
8	1984	23262	Reinhardtius	'Greenland halbut'	23	72	1	2000	1	1.2427
9	1996	45706	Eutrigia gurn	'Grey gumard'	5	53	10	340	2	1.5018
10	1998	46426	Marine fishes	'Marine fishes'		50	10	9999	2	3.1154
11	1997	57138	'Salmo'	Salmons and tro	2	119	11	500	11	0.0011
12	1987	62175	Strongylocen	'Green sea urchin'	29		1	300	2	2.3926
13	1962	75801	Marine fishes	'Pelagic fishes'	1	50	10	9999	4	6.5493#-04
14	1984	76530	'Crustacea'	'Crustaceans'	27	25	1	3700	2	1.2053
15	1999	70870	'Sarda sarda'	'Atlantic bonito'	3	84	80	200	1	5.79994-04
16	1961	47877	'Zeus faber'	"John dory"	15	79	5	400	3	0.0893
17	1965	39913	Rajformes!	Skates and rays!	21	135	1	3000	1	0.1114
18	1968	26168	Pandalus bor	Northern prawn	26	- 14	9	1450	1	25.8548
19	1993	36315	Cyclopterus I	'Lumpfish'	14	52	11	868	.2	0.7315
20	2005	50067	'Salmo salar'	'Atlantic salmon'	15	135	1	210	2	0.4655
21	1905	29965	'Raja'	'Skates'	21	70	1	732	2	2.4289
22	1957	72971	'Xiphias gladius'	'Swordfish'	2	449	1.1	800	51	0.0354
23	2005	54364	Platichthys fie	'European flounder'	23	50	1	100	1	6.5698
24	1989	20364	Flounders or	Flounders/halbut	23	197	20	500	3	0.0034
25	1994	73706	Thurnus alba	'Yellowfin tuna'	- 3	231	51	9999	21	0.1659
26	1992	78017	Perceormes'	'Perch-likes'	4	58	1	9999	1	4.0859
27	2004	49344	'Salmo'	Salmons and tro	2	119	21	500	1	3.3543e-04

Sea Around Us Data

324	5315×10 table									
1.467070	1 Year	2 CellD	3 TaxonName	4 CommonName	5 FunctionalGroupID	6 SLMax	7 MinDepth	8 MaxDepth	9 catchtypeID	10 SumCatch
1	1959	\$3632	Marine fishes	'Marine fishes'		50	10	9999	1	27.7925
2	1951	63595	'Hajidae'	'Skates'	21	98	1	4156	1	0.0848
3	1953	54366	Rostroraja alba	"ehite skate"	22	189	30	600	.3	0.0806
4	1960	45713	Sharks rays a	Cartilaginous fish	- 21	150	10	9999	1	0.0022
5	1975	65052	Rachycentrid	'Cobia'		178	1	1200	1	8.99448-04
6	1976	27078	'Lamna nasus'	'Porbeagle'	25	287	1	9999		0.0155
7	1978	58673	'Loigo'	Common squids*	2.	46		500	1	1.9290
8	1984	23262	Reinhardtius	'Greenland halibut'	23	72	1	2000	1	1.2427
9	1996	45706	Eutrigia gurn	'Grey gumard'		53	10	340	2	1.5018
10	1998	46426	Marine fishes	'Marine fishes'		50	10	9999	2	3.1154
11	1997	57138	'Salmo'	Salmons and tro		119	11	500	11	0.0011
12	1987	62175	Strongylocen	'Green sea urchin'	21		1	300	2	2.3926
13	1962	75801	Marine fishes	'Pelagic fishes'		50	10	9999	4	6.5493#-04
14	1984	76530	'Crustacea'	'Crustaceans'	27	25	1	3700	2	1.2053
15	1999	70870	'Sarda sarda'	'Atlantic bonito'		84	80	200	1	5.79994-04
16	1961	47877	'Zeus faber'	'john dory'	15	79	5	400	3	0.0893
17	1965	39913	Rajformest	'Skates and rays'	21	135	1	3000	1	0.1114
18	1968	26168	Pandalus bor	'Northern prawn'	21	- 14	9	1450	1	25.8548
19	1993	36315	Cyclopterus I	'Lumpfish'	14	52	11	868	.2	0.7315
20	2005	50067	'Salmo salar'	'Atlantic salmon'	15	135	1.1	210	2	0.4655
21	1905	29965	'Raja'	'Skates'	21	70	1	732	2	2.4289
22	1957	72971	'Xiphias gladius'	'Swordlish'		449	1.1	800	11	0.0354
23	2005	54364	Platichthys fie	'European flounder'	21	50	1	100	1	6.5698
24	9891	20364	Flounders or	Flounders/halbut	23	197	20	500	3	0.0034
25	1994	73706	Thunnus alba	'Yellowfin tuna'		231		9999	31	0.1659
26	1992	78017	'Percéormes'	'Perch-likes'		58	10	9999	1	4.0859
27	2004	49344	'Salmo'	Salmons and tro		119	1	500	1	3.3543e-04

Name	Description	Size	FG15	Large Benthopelagics	>=90
		(cm)	FG16	Small Reef associated fish	<30
FG0	Other	-	FG17	Medium Reef associated fish	30-90
FG1	Small Pelagics	<30	FG18	Large Reef associated fish	>=90
FG2	Medium Pelagics	30-90	FG19	Small to Medium Sharks	<90
FG3	Large Pelagics	>=90	FG20	Large Sharks	>=90
FG4	Small Demersals	<30	FG21	Small to Medium Ravs	<90
FG5	Medium Demersals	30-90	FG22	Large Rays	>=90
FG6	Large Demersals	>=90	FG23	Small to Medium Elatfishes	<90
FG7	Small Bathypelagics	<30	FG24	Large Flatfishes	>=90
FG8	Medium Bathypelagics	30-90	FG25	Cenhalonods	-
FG9	Large Bathypelagics	>=90	FG26	Shrimpe	
FG10	Small Bathydemersals	<30	FG20 EC27	Lobstore Crabe	-
FG11	Medium Bathydemersals	30-90			-
FG12	Large Bathydemersals	>=90	FG28		-
EG13	Small Benthonelagics	<30	FG29	Other Demersal	-
EG14	Medium Benthonelagics	30-90	EC30	Krill	
	Mediani Dentriopelagies	00 00	1030		

Catch Distributions

Catch Distributions

Catch Distributions

Taxon Growth Table

von Bertalanffy Growth Function:

$$L_t = L_{\infty} \left(1 - e^{-K(t - t_0)} \right)$$

Length to mass conversion:

 $W = aL^{b}$

TaxonKey	TaxonName	Linf	VBonK	tO	IwA	W8
600120	Scomberomorus cavalla	184	0.28	-0.43202	0.00831	2.973
600121	Scomberomorus commerson	240	0.38	-0.27718	0.0099	2.95
600123	Scomberomorus guttatus	78.5	0.34	-0.37	0.0096	3.002
600125	Scomberomorus lineolatus	82.6	0.33	-0.33	0.00417	3.044
600126	Scomberomorus maculatus	91	0.27	-0.47638	0.00884	2.982
600131	Scomberomorus niphonius	100	0.91	-0.13366	0.01	3
600134	Scomberomorus regalis	186.4	0.17	-0.61	0.0202	2.8
600136	Scomberomorus sierra	101.8	0.27	-0.44	0.01	3
600138	Somniosus microcephalus	730			0.01	3
600139	Squalus acanthias	160	0.036	-3.19986	0.0031	3.1056
600140	Rhinobatos percellens	102.8	0.31	-0.38	0.00811	2.81
600141	Scomberomorus tritor	100	0.311	-0.38363	0.018	2.93
600142	Thunnus alalunga	159.201	0.13	-0.83474	0.0272	2.8
600143	Thunnus albacares	239	0.37	-0.26754	0.0216	2.981
600144	Thunnus atlanticus	107.95	0.33	-0.38626	0.0184	3.024
600145	Thunnus maccoyii	245	0.151	-0.65371	0.0167	3.06
600146	Thunnus obesus	250	0.125	-0.78016	0.0178	2.902
600147	Thunnus thynnus	458	0.067	-1.29891	0.0231	2.934
600148	Thunnus tanggol	144.983	0.324	-0.35815	0.01	3
600149	Rhinobatos planiceps	78.8	0.41	-0.31	0.01	3
600509	Ophiodon elongatus	152	0.18	-0.66948	0.01	3
600510	Pleurogrammus azonus	64.3	0.34	-0.34	0.01	3
600512	Anoplopoma fimbria	120	0.29	-0.46306	0.0058	3.14
600513	Psettodes erumei	64	0.558	-0.26279	0.0039	3.214
600514	Hippoglossus stenolepis	258	0.06	-1.78659	0.00314	3.24
600516	Reinhardtius hippoglossoides	116.3	0.07	-1.73038	0.00303	3.2578
600517	Atheresthes stomias	86.6	0.11	-1.02	0.01981	2.7913
600518	Reinhardtius evermanni	100	0.13	-1.0074	0.00372	3.2532
600519	Hippoglossoides elassodon	54	0.35	-0.35	0.01018	3.0076
600520	Limanda aspera	49	0.14	-1.10391	0.0076	3.1531
600521	Limanda ferruginea	64	0.335	-0.42978	0.01	3
600524	Pseudopleuronectes americanus	64	0.384	-0.39717	0.01	3
600525	Solea solea	70	0.264	-0.56861	0.00622	3.04
600526	Dicologlossa cuneata	30	0.47	-0.36719	0.00845	2.968
600527	Austroglossus microlepis	77.5	0.14	-0.94	0.01	3
600528	Austroglossus pectoralis	60	0.375	-0.39774	0.00178	3.335
600529	Scophthalmus mombus	75	0.5	-0.30497	0.0143	2.93
600530	Scophthalmus aquosus	45.7	0.242	-0.63615	0.01	3
600531	Stephanolepis cirrhifer	31.5	0.26	-0.63	0.01	3

Growth Parameters

Spiny dogfish (Squalus acanthias)

Yellowfin sole (Limanda aspera)

Functional Group Growth Table

- Average five parameters in taxon growth table
- Calculate weighted averages
- Catch that doesn't weight calculation:
 - Missing taxon
 - Incomplete set of parameters

Name	Description	Size	FG15	Large Benthopelagics	>=90
		(cm)	FG16	Small Reef associated fish	<30
FG0	Other	-	FG17	Medium Reef associated fish	30-90
FG1	Small Pelagics	<30	FG18	Large Reef associated fish	>=90
FG2	Medium Pelagics	30-90	FG19	Small to Medium Sharks	<90
FG3	Large Pelagics	>=90	FG20	Large Sharks	>=90
FG4	Small Demersals	<30	FG21	Small to Medium Rays	<90
FG5	Medium Demersals	30-90	FG22	Large Ravs	>=90
FG6	Large Demersals	>=90	FG23	Small to Medium Flatfishes	<90
FG7	Small Bathypelagics	<30	FG24	Large Flatfishes	>=90
FG8	Medium Bathypelagics	30-90	EG25	Cephalopods	-
FG9	Large Bathypelagics	>=90	EG26	Shrimps	_
FG10	Small Bathydemersals	<30	FG27	Lohsters Crahs	-
FG11	Medium Bathydemersals	30-90	FG28	Jellyfish	_
FG12	Large Bathydemersals	>=90	FG20	Other Demorsal	_
FG13	Small Benthopelagics	<30	1029	Invertebrates	-
FG14	Medium Benthopelagics	30-90	FG30	Krill	-

Missing Data

Of 1,039,675,097.2687 tonnes

$$W = a \left(L_{\infty} \left(1 - e^{-K(t-t_0)} \right) \right)^b$$

$$W = a L_{\infty}^{b}$$

Dummy Model

- Reads and makes input data available
- Instantiates model grid
- Populates grid cells with cohorts
 - No ecological processes
 - Fished cohorts remain in place
- Writes output data to file

Dummy Model

Model Grid

Functional Group Index

Results

Results

Results

Areas For Development

- Fished size-class based on technology
- Bathymetry and habitat affinity attribute
- Division between commercially and noncommercially exploited species
 - 2.2 million marine species*
 - 2.55 thousand species in SAUP taxon table
 - Critical to stability of modelled system

*Mora et al. (2011). PLoS Biology, 9(8).

Thank You!

Acknowledgements

- The Nippon Foundation and the Nereus Program
- The Sea Around Us Project
- Yoshitaka Ota, William Cheung, and Vicky Lam
- Chris McOwen, Mike Harfoot, and Derek Tittensor
- Mike Bithell, and Tom Spencer
- Rebecca Asch and Charlie Stock
- And many others!

